Less car dependent cities
Planning for low carbon in Oslo

Aud Tennøy, PhD Urban and Regional Planning
Chief Researcher Sustainable Urban Development and Mobility
Institute of Transport Economics (TOI)

Interesting times…

- Paradigm shifts – on a critical turning point
‘Automobile city’
Mobility

‘Sustainable city’
Accessibility
Interesting times…

- Paradigm shifts – on a critical turning point
- Norway: The zero-growth objective
- Planning for less car-dependent and transport demanding cities seems like the obvious solution:
 - Land use development as densification and transformation rather than sprawl, ‘right’ location
 - Improving public transport services, and conditions for walking and bicycling
 - Fiscal and physical restrictions on car-usage
Densification in nodal points
Effects of location in nodal points

Car shares to/from housing located here

- Rest of Oslo
- Nydalen-Storo
- Bryn-Helsfyr
- Oslo inner city
- Oslo city centre

Car shares to/from work-places located here

- Rest of Oslo
- Nydalen-Storo
- Bryn-Helsfyr
- Oslo inner city
- Oslo city centre
Car free city centre Oslo
Car free city centre

‘Car free city centre’ in Oslo:
- Remove on street parking
- Strong restrictions on through-fare
- Designated spaces for goods deliveries and utility cars
- Various measures for improving ‘urban life’

To achieve:
- More enjoyable and lively city centre
- Improved accessibility by other modes than car
- Reduced car-usage to, from an in city centre – and elsewhere
- Improve conditions for deliveries
- Reduce local pollution and CO2 emissions

Car shares to/from city centre are currently 7-10%
High expectations!

- Our research – ex ante data (May 2017)
- Commuters in Oslo (N=5400):
 - 43 percent believe more people will use the city centre, it will become more vibrant, 17 percent believe the opposite
 - 22 percent believe they will visit the city centre more often, 12 percent less often
- Truck drivers
 - 45 of 65 truck drivers are dissatisfied with the current goods delivery situation in the city centre
 - 35 of 64 truck drivers believe it will become better, 11 believe worse
Urban road capacity

- Plans for massively increasing urban motorway capacity
Experiences – capacity reduction

- Reduced capacity in 10 tunnels on urban main roads due to maintenance
- Bryns tunnel: AADT 70 000, capacity reduced from four to two lanes for six months
Capacity reduction: Effects on commute satisfaction

Tennøy et al. 2017
Transport quality

Insurance company relocated from nodal point to city centre - modal shares of car reduced from 48 to 9 per cent

Christiansen and Julsrud (2014)
Urban road capacity

- 2018: Reallocating one of three car lanes to a public transport lane (trial)
Planning for less car-dependent cities

- How and why do we still plan and develop car-dependent cities?
- What needs to *change* if we instead are to plan and develop less car-dependent cities?

- Planners (and others)
- Expert knowledge
 - *Including methods*
- Plan-making processes
In cases resulting in plans for increased road capacity:

- Other objectives were seen as competing to ‘reducing traffic volumes’, and prioritised
- Realistic ‘traffic reducing alternatives’ were never introduced or assessed – growth understood as inevitable
- Methods applied (transport models) could not handle traffic reducing measures
- In assessments, ‘time savings’ strongly affected the cost-benefit results
- Expanding road capacity was the only possible answer
IF planning for less car-dependent cities:

- We need to do things differently than before
- We need to reframe the problem - and potential solutions

Tennøy (2010)
Traffic volumes (vkm)

Quality of transport systems

Travel behaviour

Land use

Tennøy (2015)
IF planning for less car-dependent cities:

- We need to do things differently than before
- We need to reframe the problem - and potential solutions

We need to change how we think and act
Thank you!
References

▪ Christiansen, Petter and Tom Erik Julsrud (2014) Effects of relocation to a transport focal point TØI report 1344/2014

▪ Tennøy, A. (2012) How and why planners make plans which, if implemented, cause growth in traffic volumes. Explanations related to the expert knowledge, the planners and the plan-making processes. PhD thesis 2012:01 at Norwegian University of Life Sciences, Department of landscape architecture and spatial planning.

Incentives electric vehicles

- Exemption, registration tax 1996
- Free toll roads 1997
- Free parking 1998
- Exemption, value added tax 2001
- Access to bus lanes 2003
- Reduced annual tax 2005
- Reduced company car tax
- Reduced rate ferries 2009
Market shares sales new cars

New BEVs sold per month

- BEVs
- PHEVs
- HEVs
- Gasoline
- Diesel
105 800 BEVs (March-2017), 4% of total fleet, on Norwegian roads (passenger vehicles, M1)
In addition 37 450 PHEVs (1.4% of fleet)

BEV adoption areas: Started in cities and surrounding areas, and where free toll roads an advantage, now everywhere.
Experiences – capacity reduction

- Reduced capacity in 10 tunnels on urban main roads due to maintenance
- Bryns tunnel: AADT 70 000, capacity reduced from four to two lanes from February 2016 to April 2017
Findings – traffic and speed

Traffic volumes - E6 Manglerud - rush hours

Average speeds - Teisen-Ryen - afternoon rush

Tennøy et al. 2017
Rerouting as adaptation?

Lost about 3000 vehicles in morning rush and about 6000 in afternoon rush

Tennøy et al. 2017
Modal change?

![Bar chart showing changes in modal transport from 2015 to 2017.](chart)

- **Walking**: 2017 (N=625) = 6, 2016 (N=1029) = 6, 2016 (n=355) = 6
- **Bicycling**: 2017 (N=625) = 17, 2016 (N=1029) = 17, 2016 (n=355) = 17
- **Public transport**: 2017 (N=625) = 46, 2016 (N=1029) = 40, 2016 (n=355) = 40
- **Car - driver**: 2017 (N=625) = 29, 2016 (N=1029) = 29, 2016 (n=355) = 29
- **Car - passenger**: 2017 (N=625) = 3, 2016 (N=1029) = 2, 2016 (n=355) = 1
- **Other**: 2017 (N=625) = 2, 2016 (N=1029) = 2, 2016 (n=355) = 2

Tennøy et al. 2017