

Using NTS data to explore frequency and rhythms of food shopping

Giulio Mattioli

Centre for Transport Research, University of Aberdeen

"Gross polluters for food shopping travel - a practice-based typology"

Two methodological challenges:

- 1. How to **investigate the frequency** of activities
- 2. How to **highlight meaningful patterns of variation** in energy-demanding (mobility) practices

Why National Travel Survey data?

- Theme 1 ambition to investigate the timing and rhythm of energy-demanding practices (Walker, 2014).. But what about **activities with less than daily frequency?**
- 2 days in British 2000 TUS clearly inadequate
- 6 weeks ideally needed for travel behaviour (Schlich & Axhausen, 2003)
- British NTS
 - advantages: 7 consecutive days, all household members, continuous survey, large sample, includes information (distance, vehicles) allowing to compute energy / emissions estimates
 - **limitations**: only trips reported, short walks (<1 mile) only on 7th day

Why food shopping?

- generally less-than daily frequency but at least once a week (Bhat et al., 2004): can assume that behaviour in travel diary is a representative of a more general pattern
- best analysed at the **household level**
- substantive interest:
 - substantial amount of travel
 - particularly and increasingly car dependent (until recently)
 - mostly studied from a built environment perspective what about frequency?

Beyond aggregate averages – looking for variation

Three sequential steps:

- 1. Focus on a single practice: food shopping (travel)
- 2. Focus on 'gross polluters' = households in the top 20% of weekly car driver distance for food shopping (proxy for CO_2 emissions) (cfr. Brand & Boardman, 2008)
- 3. Cluster analysis to highlight variation within the top 20%

'Gross polluters' for food shopping travel

NTS 2002-2010 - own elaboration

Cluster analysis

- Classification and segmentation techniques **common in 'ABC' research**
- CA has been **used to investigate 'clusters of practice'** based on own-survey data (Browne et al., 2014)...
- ...but conceptually tricky to cluster practices based on information at the individual / household level
- notably when using existing datasets
- degree of arbitrariness in **choice of input variables**
- NTS travel diary week data rarely used for clustering (Mattioli, 2014)

Input variables

- 1 **Distance** Percentile of car driver distance travelled (within type of area)
- **2 Concentration** % of distance accounted for by longest trip
- **3 Frequency** Total number of car driver trips in travel week diary
- 4 Alternative modes % of trips by modes other than car driver / passenger
- 5 Shopping intensity (distance) % of total household car driver distance accounted for by food shopping
- 6 Shopping intensity (time) % of total household travel time accounted for by food shopping

4 cluster solution

Size (%)

Distance (percentile)

Concentration

Frequency

Alternatives

Shopping intensity – distance

Shopping intensity - travel time

Long distance trip &	Shopping intensive	Frequent shopping	Single long distance
alternatives			trip
Cluster 4	Cluster 3	Cluster 2	Cluster 1
7.3%	11.7%	37.1%	44.9%
43	64	64	36
49%	34%	28%	50%
3.3	5.5	6.8	3.3
40.3%	2.3%	1.3%	0.4%
17%	57%	16%	12%
16%	43%	13%	9%

Trip rates by day of the week

NTS 2002-2010 - own elaboration

Socio-demographic profile

	1 - Single Long Distance Trip	2 - Frequent Shopping	3 - Shopping Intensive	4 - Long Distance Trip & Alternatives	MEAN
DEMOGRAPHICS					
Household size	2.6	2.8	2.0	2.7	2.6
HRP over 60 years old	26%	28%	68%	31%	31%
HRP non-employed	19%	20%	67%	26%	25%
Pensioner household	17%	17%	57%	19%	21%
INCOME					
Lowest or second quintile	26%	26%	54%	31%	29%
Mobility difficulties					
Mobility difficulties (foor or bus)	16%	20%	43%	17%	20%

Conclusions

- Frequency (not just distance) as a problem. No strong impact of accessibility: built environment matters, but it is only part of the story
- Focusing on **top 20% for a specific practice brings to light partly different social groups** than Top 20% in terms of overall transport emissions (high income, rush hour of life, etc., cfr. Brand & Boardman, 2008)
- Who should be the target for policy?
- Clustering based on patterns of activity over a week, then description based on characteristics of individuals / households. Is this an **useful approach?**

Thank you for your attention!

www.demand.ac.uk

giulio.mattioli@gmail.com

